NCERT Solutions for Class 11 Maths Chapter 13 – Limits and Derivatives Ex 13.1
Page No 301:
Question 1:
Evaluate the Given limit:

Answer:

Question 2:
Evaluate the Given limit:

Answer:

Question 3:
Evaluate the Given limit:

Answer:

Question 4:
Evaluate the Given limit:

Answer:

Question 5:
Evaluate the Given limit:

Answer:

Question 6:
Evaluate the Given limit:

Answer:

Put x + 1 = y so that y → 1 as x → 0.

Question 7:
Evaluate the Given limit:

Answer:
At x = 2, the value of the given rational function takes the form .
.
 .
.
Question 8:
Evaluate the Given limit:

Answer:
At x = 2, the value of the given rational function takes the form .
.
 .
.
Question 9:
Evaluate the Given limit:

Answer:

Question 10:
Evaluate the Given limit: 

Answer:

At z = 1, the value of the given function takes the form .
.
 .
.
Put so that z →1 as x → 1.
 so that z →1 as x → 1.
 so that z →1 as x → 1.
 so that z →1 as x → 1.
Question 11:
Evaluate the Given limit:

Answer:

Question 12:
Evaluate the Given limit:

Answer:

At x = –2, the value of the given function takes the form .
.
 .
.
Question 13:
Evaluate the Given limit:

Answer:

At x = 0, the value of the given function takes the form .
.
 .
.
Question 14:
Evaluate the Given limit:

Answer:

At x = 0, the value of the given function takes the form .
.
 .
.
Page No 302:
Question 15:
Evaluate the Given limit:

Answer:

It is seen that x → π ⇒ (π – x) → 0

Question 16:
Evaluate the given limit: 

Answer:

Question 17:
Evaluate the Given limit:

Answer:

At x = 0, the value of the given function takes the form .
.
 .
.
Now,

Question 18:
Evaluate the Given limit:

Answer:

At x = 0, the value of the given function takes the form .
.
 .
.
Now,

Question 19:
Evaluate the Given limit:

Answer:

Question 20:
Evaluate the Given limit:

Answer:
At x = 0, the value of the given function takes the form .
.
 .
.
Now,

Question 21:
Evaluate the Given limit:

Answer:
At x = 0, the value of the given function takes the form .
.
 .
.
Now,

Question 22:

Answer:

At , the value of the given function takes the form
, the value of the given function takes the form .
.
 , the value of the given function takes the form
, the value of the given function takes the form .
.
Now, put  so that
 so that .
.
 so that
 so that .
.
Question 23:
Find  f(x) and
f(x) and f(x), where f(x) =
f(x), where f(x) =
 f(x) and
f(x) and f(x), where f(x) =
f(x), where f(x) =
Answer:
The given function is
f(x) =






Question 24:
Find  f(x), where f(x) =
f(x), where f(x) =
 f(x), where f(x) =
f(x), where f(x) =
Answer:
The given function is


Question 25:
Evaluate f(x), where f(x) =
f(x), where f(x) = 
 f(x), where f(x) =
f(x), where f(x) = 
Answer:
The given function is
f(x) = 



Question 26:
Find f(x), where f(x) =
f(x), where f(x) =
 f(x), where f(x) =
f(x), where f(x) =
Answer:
The given function is


Question 27:
Find f(x), where f(x) =
f(x), where f(x) =
 f(x), where f(x) =
f(x), where f(x) =
Answer:
The given function is f(x) = .
.
 .
.
Question 28:
Suppose f(x) = and if
 and if f(x) = f(1) what are possible values of a and b?
f(x) = f(1) what are possible values of a and b?
 and if
 and if f(x) = f(1) what are possible values of a and b?
f(x) = f(1) what are possible values of a and b?Answer:
The given function is

Thus, the respective possible values of a and b are 0 and 4.
Page No 303:
Question 29:
Let be fixed real numbers and define a function
be fixed real numbers and define a function
 be fixed real numbers and define a function
be fixed real numbers and define a function
What is f(x)? For some
f(x)? For some  compute
 compute f(x).
f(x).
 f(x)? For some
f(x)? For some  compute
 compute f(x).
f(x).Answer:
The given function is .
.
 .
.
Question 30:
If f(x) = .
.
 .
.
For what value (s) of a does  f(x) exists?
f(x) exists?
 f(x) exists?
f(x) exists?Answer:
The given function is

When a < 0,



When a > 0

Thus,  exists for all a ≠ 0.
 exists for all a ≠ 0.
 exists for all a ≠ 0.
 exists for all a ≠ 0.Question 31:
If the function f(x) satisfies , evaluate
, evaluate .
.
 , evaluate
, evaluate .
.Answer:

Question 32:
If . For what integers m and n does
. For what integers m and n does  and
 and  exist?
exist?
 . For what integers m and n does
. For what integers m and n does  and
 and  exist?
exist?Answer:
The given function is


Thus,  exists if m = n.
 exists if m = n.
 exists if m = n.
 exists if m = n.
Thus,  exists for any integral value of m and n.
exists for any integral value of m and n.
 exists for any integral value of m and n.
exists for any integral value of m and n. 
